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NONEXPLICIT SINGULAR PERTURBATIONS

AND INTERCONNECTED SYSTEMS

George Michael Peponides, Ph.D.
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Singular perturbations have been shown to be an effective tool in

the analysis and design of systems with "slow" and "fast" dynamics. However,
the use of this tool is often inhibited by the fact that when physical
quantities are selected as state variables the model fails to be in the
standard singularly perturbed form. In this thesis we deal with such
nonexplicit models and show that for a wide class of problems a proper
selection of variables leads to explicit singularly perturbed models.
Equilibrium and conservation properties are shown to provide a coordinate-
free characterization of two-time-scale systems., They also suggest a
coordinate transformation that transforms nonexplicit models into explicit
ones. This transformation is then used to study nonlinear high gain
feedback systems, thus extending earlier linear results. It is also utilized
to establish the relation between weak connections and time scales in inter-
connected systems whose subsystems possess a continuum of equilibrium points.

Finally, the methodology is applied to reduced order modeling of dynamic

v
:! networks and it is shown that linear conservation laws lead to a linear
" .,
ff transformation separating the time scales even when some of the components
3 N of the network are nonlinear. Moreover, the reduced order model retains

L. the physical meaning of the original system.
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CHAPTER 1

INTRODUCTION

1.1 Model Simplification in Large Systems

An issue of paramount importance in the study of large scale
systems is that of model simplification or reduced order modeling. The
sheer size on the one hand and the richness and complexity of phenomena
on the other make the use of detailed models in the analysis and control
of large systems impractical if not impossible. A good analyst or designer
knows that a model should encompass only the 'relevant" behavior of the

system and should not be cluttered with unnecessary detail. Although this

may sometimes be accomplished by employing parsimonious models for the
components of the system, there are cases where further simplification is
needed to make the model manageable both computationally and conceptually.
A characteristic example arises in stability studies of interconnected
power systems where the use of the crudest model for each generator (the
so-called electromechanical model) results in hundreds or even thousands
of state variables. It is thus desirable to have systematic model order
reduction methods for which the approximation involved can be estimated.
Singular perturbations is a well documented [1-4] method for
reduced order analysis and design, in which dynamic phenomena of widely
different speeds are treated separately, In the short run the slow
dynamics are essentially constant and the focus is on the fast ones.
In the long run the fast dynamics settle to their '"quasi-steady-state"

and the focus is on the slow dynamics. This time-scale thinking is common

________




!I in diverse engineering fields [5-7]. If a small parameter ¢ representing
;;, the speed ratio of slow and fast dynamics can be identified this intu-

ifg itively appealing idea leads to asymptotic analysis. Most of the

literature [8-10] is devoted to systems of the form

¥y = £(y,2,¢) y(0)

L]
<

(1.1)

]
N

ez = g(y,2,¢€) 2(0)

where ¢ multiplies the z-derivatives, y is a y~vector and z is a p-vector.

Formally setting £=0 in (1.l1), solving
0 = g(¥,2,0) (1.2)

for Z, Z = ¥(¥) and substituting into (1.1)

L. £G, v®.0%F, FO -3, (1.3)

we obtair ‘he slow reduced model. Writing system (1.1) in the "stretched"

time variable 7 = % and setting =0 we obtain the fast reduced system (or

. associated system or boundary layer system)
:! dz -
Eil ar g(yo, z, +z, 0) z(0) = 2,72, (1.4)

where zoéi(O). Variables y,z,e,t are restricted to lie in a domain

D : ||y-;(t)]| <r, ||z=Z(t)||<r, 0<e < e,» 0 <t <T, where r > |!y°-7(0)”.
The following theorem relates the solutions of (1.1) with the solutions of

(1.3)-(1.4).
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Theorem 1.1 [35] Let the foiricwing conditions be satisfied.

Hl. £, af/3y, d£/3z, 8, 38/dy, 3g/dz are of class C° in D.

H2. The solution Zz(t) of (l.4) exists on 7€ [0,® ], is unique, and is
asymptotically stable with respect to z=0,

H3. The solution y(t) of the reduced system (l.3) exists and is unique
on t€[0,T].

H4. The real parts of the eigenvalues of the Jacobian matrix

38/32(y,2,0) (1.5)

are negative on [0,T], for z=¥(y).

Then for sufficiently small ¢, the full system (1.1) has a unique
solution y(t,s) on t€ [0,T] satisfying the initial condition y(O,e)=yo,

z(0,5)=z°. Furthermore,

lim y(t,e) = y(t, on [0,T] (1.6)
e~0
lim z(t,e) = E(c)+"z‘(§) on [0,T] (1.7)
e~ 0

where the 1?mits in (1.6), (1.7) are uniform in t on [0,T].

From (1.6), (1.7) the response of y in (1.1l) is approximated,.to
0(e), by the response of the slow system (1l.3) whereas the response of 2z
is approximated by a boundary layer ?(f) superimposed on the quasi-steady-
state z(t)=yY(¥(t)).

An extensive literature dealing with system (1.1) and the
corresponding controlled system includes results on stability [20,65,66],
linear [4,67] and nonlinear [3] regulator design, controllability properties

[37] and time-optimal control [68],filtering and smoothing [69]. A basic
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assumption in these references is that the Jacobian matrix ag/az(;;;,O)

is nonsingular. When this happens we say that time scales in (1.1) are

explicit, that is, they coincide with the decomposition of the state vector

into y and z. When, however, 3g/3z is singular time scales in (1.1) are

nonexplicit, that is, all states may be mixed having fast and slow parts.
Some authors treat such cases as 'singular-singularly perturbed" systems
[LL-13] or '"generalized singularly perturbed" systems [14,15].

In this thesis we take an alternate route. We recognize that in
a wide class of systems singularity of 3g/3z is due to the selection of
state variables; hence a nonsingular transformation removes the singularity
of 3g/3z, and defines new states in which time-scales are explicit. This
approach has two advantages. First it puts the system into a form in which
the results alluded to before can be applied. Second, from the transformed
system we can easily define fast and slow reduced systems describing the
system behavior in the short run and in the long run. Following this
approach we establish a relation between weak connections and time scales
in a class of interconnected systems. Separation of time scales in such
systems leads to a physical decomposition into a slow core and a number of
weakly coupled fast subsystems. The results are further specialized to
structured interconnected systems such as power systems and other dynamic

networks.

1.2 cChapter Preview

Chapter 2 starts with a simple RC example pointing the relationship

between equilibrium and conservation properties on the one hand and time

scales on the other [16]. These properties are used in the construction of
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a transformation that makes the time scales in Linear Time Invariant (LTI)
systems explicit. Next a multi-time-scale system is viewed as a succession
of two-time-scale ones. Starting from the fastest time scale we proceed
to the slower ones, using at each step the transformation that makes time-
scales explicit. This procedure defines a sequence of "nmested" reduced
order models. The transformation separating the time scales is then
generalized to LTI systems with inputs.

In Chapter 3 the equilibrium and conservation reasoning is extended
to nonlinear systems leading to a transformation that makes time scales

explicit in models of the form

ex = h(x,¢). (1.8)

It is then shown that the results of [17-19] on high gain feedback and
disturbance decoupling generalize to a class of nonlinear systems for
which the controls enter linearly but the output map and feedback law are
nonlinear. We next turn to interconnected systems made of systems with
equilibrium manifolds and show that weak connections give rise to two-time-
scale behavior. A decomposition of interconnected systems into a slow core
and fast local systems leads to decentralized stability criteria based on
the results of [20].

Chapter 4 deals with time scales, coherency and aggregation in
nonlinear dynamic networks. Coherency based aggregation [21-23], a common
procedure for order reduction in powe; systems, is given theoretical
foundations for nonlinear electromechanical models, thus extending the

results of [24~29]. It is shown that linear physical laws result in

linear time-scale separating transformation even when some components of
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the network are nonlinear. A five-machine power system example illustrates
the proposed reduced-order modeling and verifies its validity.
Extensions in several directions and possible uses of the

decomposition in direct stability analysis are discussed in Chapter 5.
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CHAPTER 2

MODELING OF TWO-TIME-SCALE SYSTEMS

2.1 Introduction

When the model of a real system with the two-time-scale property
is expressed in terms of physical variables it often fails‘to be in the
form (1.1). An important requirement in (1.1) is that 3g/3z be nonsingular
along z(t). When this condition is violated the model is said to be non~
explicit and the conclusions in Chapter 1 have to be modified.

Some authors [11-13] treat nonexplicit models as "singular-
singularly perturbed" systems. Instead we approach them from the modeling
point of view recognizing that the singularity of 3g/dz is due to the choice
of state variables. We show that equilibrium [16] and conservation properties
provide a coordinate-free characterization of singular perturbations. These
properties are used in the construction of a transformation leading to the
explicit model (1.1) with the slow part of z(t) being O0(e). The discussion
in this chapter is restricted to Linear Time Invariant (LTI) systems.
Extension of the basic ideas to nonlinear systems and applications to
interconnected systems, high gain feedback and dynamic networks appear in
Chapters 3 and 4. .

In Section 2.2, a simple physical system is used to motivate the
discussion and indicate the relation between time scales on the one hand
and equilibrium and conservation prop;rties on the other, In Section 2.3, the

relation is established for LTI systems and a transformation is constructed

that transforms a nonexplicit singularly perturbed model to the explicit




model (1.1). 1In Section 2.4, multi-time-scale systems are treated as a
succession of two-time-scale systems and a sequence of nested reduced order

models is defined. Section 2.5 generalizes the results of Section 2.3 to

- o

systems with inputs and Section 2.6 deals with some structured nonexplicit

models.

2.2 Equilibrium and Conservation Properties

Although nonexplicit singular perturbations occur in as simple
systems as RC-circuits they have not attracted much attention. In contrast,
explicit perturbations have been investigated for networks with "parasitic" :l
inductances and capacitances [30,31]. When such parasitics are expressed
as multiples of ¢ .~.. capacitor voltages and inductor currents are used as
state variables, the circuit model is in the explicit form (1.1). A simple ;¥

illustration is the RC-circuit of Fig. 2.la with state equations

(Rlcl) dxl/dtd = «X. + X

1 2 T
(R{Cy) dx2/dtd =x - [1+ (Rl/Rz)] x, + (R1/R2) Xq 2.1 -
(R\C5) dxj/dt, = (R;/R,) x, - [(R{/R)) + (R1/R3)] X, 5
where the capacitor voltages were chosen as states and ty is dimensional
time. Suppose that 02 and C3 are ''parasitic,!" say C2=C3=eC1 and that
all the resistors are of the same order of magnitude. Recognizing Rlcl ;

as a typical large time constant and defining the slow dimensionless time

t-:d/(Rlcl) [32,33], (2.1) becomes 1
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+ X

dxl/dt = - x 2

1

s |

edledt: =x - [1+ (Rl/Rz)] x, + (RI/RZ) Xy 2.2)
edx,/dt = (Rl/Rz) x, = [(R1/R2) +,(R1/R3)] Xy

3 Thus x, appears as the E
as the z-variables of (1.1) and the model is

with ¢ multiplying the derivatives of x, and x

y-variable and X,5¥%,

explicit because the two-by-two matrix of Xy5X is nonsingular. The slow i

3

reduced model (1.2) represents the circuit with parasitic capacitors C2

and C, opened (Fig. 2.1b), whereas in the fast reduced model (l1.3) the

3
large capacitor Cy is shortened [30] (Fig. 2.1le).

In the same circuit nonexplicit singular perturbations occur
when all capacitors are of the same order of magnitude, say C1=C2=C3=C,

but the resistors are not. For example, if R, and R, are small and R

1 2 3
is large, say

:1
R, =, Ry =71/2, Ry =R, /R = ¢ (2.3) ‘
typical large and small time constants are RC and rC, respectively, and 3
in the dimensionless time variables R

t t
d d t ]
t = Re’ T T’ . € (2.4) q
the circuit is described by ;
a1 1 0 )
g e (dx/dt) =dx/dr = | 1 -3 2 | x&ac) x. (2.5) 1
0 2 -2-¢ _
]
-l
]
Y
b
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Note that ¢ multiplies all the derivatives in the slow time-scale t and
thus there are no explicit slow y-variables in the system. If g&, that
is A(0), were nonsingular, no slow phenomenon would exist in (2.5) and
the system would not possess the two-time-scale property. However, A(0)
is singular indicating the existence of a "hidden'" slow phenomenon. To
see this assume that x(0) = [1 1 1]T in (2.5). Then the slow-time
derivatives dx/dt remain finite when e~ 0 suggesting that (2.5) is a
two-time-scale system. Physically the slow phenomenon is the discharge

of the capacitors through the large "leakage" resistor R Neglecting

3
this "leakage,'" Fig. 2.1lb, makes the slow phenomenon infinitely slow,

that is,constant and corresponds to setting €=0 in the t-model of (2.5)

-1 1 o0
.11 -3 2 | x = A(0)x (2.6)
= . .

o 2 -2

Since A(0) is singular the equation
AO) x=20 Q.7
has an infinite number of solutions given by
x=g[l 1 117 (2.8)

where ¢ is any real number, that is, (2.6) has a continuum of equilibriun
points. This can be seen from the circuit of Fig. 2.1b where any x such

that




X " X, = 0, X3 - %, = 0 2.9)

is an equilibrium point. The line represented by (2.8)-(2.9) will be
denoted by S.

Kirchhoff's current law (KCL) applied to the ground node of
Fig. 2.1b gives the dual property that is the conservation of total charge

for all 7,

Clxl(T) + szz(T) + C3x3(7) = Clxl(O) + C2x2(0) + Csx3(0) (2.10)

which means that every trajectory x(v) of (2.6) is confined to a plane F
passing through the initial point x(0) orthogonal to the vector
[Cl C2 C3]T. The quantity in (2.10), constant when e¢=0, becomes slowly
varying when ¢ > 0, that is when the "leakage" R3 is introduced. A
circuit describing this slow phenomenon is given in Fig. 2.lc and will
be derived in the next section.

From the above discussion we conclude that the trajectories
x(t) of the original system 2.5 consist of two distinct parts. First
in a "boundary layer'" near plane F the state x(t) rapidly approaches
line S. Then, from a2 neighborhood of the intersection of plane F with
line S, x(t) continues to slowly '"slide'" along line S. The geometry of
this situation is sketched in Fig. 2.2. Note that the behavior of x(t)
is similar to that of the explicit model, that is, a fast transient is
followed by a slow motion close to a 1ine of ''quasi-equilibria" S. The
basic difference is that in the explicit model (2.2) the plane F close

to which the boundary layer occurs, is orthogonal to axis Xy (Fig. 2.3).

| S
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Examination of Fig. (2.2)-(2.3) indicates that in nonexplicit models fast
dynamics are observed by all states whereas in explicit models they are
only weakly observed by some states (the y-variables).

This example indicates that the time scales of the original

system (2.5) are related to the equilibrium and conservation properties

of the auxiliary system (2.6) in T-scale. These properties are coordinate
free and characterize all two-time-scale systems reducible to the explicit
model. In the next section they will serve for a choice of coordinates in

which the time scales are explicit.

2.3 Nonexplicit Singularly Perturbed Systems

The discussion of the previous section will now be generalized

to the system
gdx/dt = dx/dt = A(e) x (2.11)

where xGfo A(e) is a time invariant nxn matrix depending on ¢, and t,
T the slow and fast time variables, respectively. The following is
assumed about A(eg).

Assumption 2.1 A(e) can be written as

A(e) = A° + € Al(e) 2.12)

with Al(e) bounded at ¢=0 and A(0)=A° satisfying

R(A) ®NA) = R ¢ (2.13)

*

( )In the terminology of [13], (2.13)-(2.14) is equivalent to ind
A =1, In [13] it is shown that this condition is necessary for lim x(t) to
exist, e~ 0
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where R(Ao) is the range space of Ao’ n(Ao) is the null space of Ao’ and
@ denotes the direct sum of two spaces [34]. The dimensions of R(Ao),

n(Ao) are
dim R(Ao) =p>1, dim 72(Ao) =y>1l,p+v=n. (2.14)

Equation (2.13) is equivalent to saying that Ao has a complete
set of eigenvectors corresponding to its zero eigenvalues, which in turn
is equivalent to the following: R(Ao) is the invariant space (eigenspace)
of Ao corresponding to the nonzero eigenvalues, and W(Ao) is the invariant
space (eigenspace) corresponding to the zero eigenvalues.

To study the time-scale behavior of (2.1l) the auxiliary system
dx/dr = Ao x (2.15)

is defined with Ao as in (2.12). By assumption, (2.15) has a y~dimeasional

*
equilibrium manifold( ) (i.e. ﬂ(Ao)) S consisting of all x such that

Ao x = 0. (2.16)

1f W is a pxn matrix, rank W=p, whose rows span the row space of A, then
[34]

Wx =0 Y x€S (2.17)

To see the conservation property of (2.15) we note that if V
is a yxn matrix, rank V = y whose rows span the left null space of Ao’

i.e. VAo = (0, then

*
( )Although S is presently, simply a subspace, we call it manifold
in anticipation of the nonlinear extension in Chapter 3.
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V(dx/dT) = VA_ x =0 Y7, ¥ x(0)er"™. (2.18)

Thus, the y-dimensional quantity Vx is constant along the trajectories

of (2.15),
V x(T) = V x(0), ¥ x(0)eRr". (2.19)

This means that for each value of V x(0) the trajectory of (2.15) is
*
confined to a linear manifold( ) defined by (2.19).

This linear manifold called dynamic manifold F, is orthogonal

to the rows of V and contains the initial point x(0). The orthogonality
between the left null space and the range space of a matrix [34] implies
that F is a translate of R(Ao).

The above discussion has established equilibrium (Eq. (2.17))
and conservation (Eq. (2.19)) properties analogous to the ones of the
RC-circuit of the previous section (Eq. (2.9) and (2.10)). The behavior
of the trajectories is still the one depicted in Fig. 2.2 with S and F
defined by (2.17) and (2.19), respectively. We are now ready to define

a new set of coordinates in which the time scales are explicit.

Theorem 2.2 Under Assumption (2.1) the change of coordinates

y =Vx, z = Wx (2.20)

transforms (2.11) into the explicit model (l.1) with z(t) = O.

(*)A linear manifold of dimension r is a translation of an
r-dimensional subspace.
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Proof:

defined by (2.20)

AR v T -
‘ '.‘.'. L ' . : ‘-.‘ : '.-,'.Hi B ..'T 't"r-"t-.‘;l.?ir‘/.":".o"m

where the columns

A -1
T (?° + A, (e)T
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of Ao’ respectively, the transformation

\'f

T
W

has inverse

-
]

[P Q]

of P,Q form bases of n(Ao), R(Ao). Hence,

-
1 VAP VA Q . VA ()P
£
K AP WA Q WA (e)P
VA (P VA
= WAQ
WA (e)P + WA (e)Q

dy,dt = All(e) y + Alz(e) z

edz/dt = ¢ A, (e) ¥ +4A,,(e) 2

Azz(e) & W AoQ +eW Al(e)Q.

»

SISO AT St S S e

Since the rows of V,W form bases for the left null and row spaces

(2.21)

(2.22)

\'] Al(e)Q

W Al(e)Q

(2.23)

(2.24)

where All(e) 4 v Al(s)P, Alz(e) Ay Al(e)Q, A21(e) a W Al(e)P and

(2.25)

To show that (2.24) is explicit model we need to show that A22(0) is

nonsingular. Notice that Assumption (2.1) implies that R(Ao) is the

Wy
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eigenspace of the nonzero eigenvalues of A . Hence there is a pxp
nonsingular matrix G whose eigenvalues are the nonzero eigenvalues

of Ao such that

AoQ = QG. (2.26)
The last relation implies
A22(0) =W AOQ =WQG=¢6 (2.27)
which is nonsingular.
Remark: Writing
-1 y
x =T = Py + QZ (2'28)
z

we see that y,z are the representations of x with respect to bases P,Q

of n(Ao), R(Ao), respectively. Another way to view (2.28) is that Py

is the projection of x on N(Ao) along R(Ao) and hence y is the representa-
tion of this projection with respect to basis P, A similar interpretation
holds for Qz and z.

We now illustrate the application of Theorem 2.2 with the RC-circuit
of Fig. 2.1 in which the time scales are due to large and small resistors as
in (2.3). The auxiliary system is given in (2.6) and the equilibrium and
dynamic manifolds are defined by (2.9) and (2.10), respectively. A choice

of coordinates according to these equations is

y = (Clx1 + szz + C3x3)/ca (2.29)

e mm o ot ot ot PP P W PR - —a P OSSP PR TP W ) o e e
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1

z; = X = Xy, z, = X3 = X, (2.30) }

where the division by i

c, = C1 + C2 + C3 (2.31) :

in (2.29) retains the physical meaning of y as a voltage variable. In the 1
new coordinates the circuit is described by

R

dy/dt = c/c + czlc2 - zcz/c2 i

yldt = - (c/c,) y + (€°/c)) z; - (2€°/cy) 7,

e(dzl/dt) = - 221 - 222 (2.32) i

s(dzz/dt) = - gy - (1 - e(c/ca)) 2, - 4 + e(zc/ca)) z,. :

As stated in Theorem 2.2 the z-equations in (2.32) give Z(t) = 0. Hence p

wes 3

the slow reduced model is

dy/dt = - (c/c,)y (2.33)

represented by the circuit in Fig. 2.lc and the fast reduced model is

dzl/dT = - 221 - 2z2

(2.34)

dz2/d1- =-7Z - 422

represented by the circuit in Fig. 2.1lb where the voltages with respect to
the "reference" node 2 are used as states,
It is interesting to note the physical interpretation of the

new variables. The slow variable y is proportional to the sum of the

charges on the three capacitors and can be considered the voltage on the
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"aggregate' capacitor Ca (Eq. (2.31), Fig. 2.1lc). Application of Kirchhoff's
current law to the ground node of Fig. 2.la shows that the time derivative of
y is proportional to the current in R3. Since R3 is large dy/dt is small
and y qualifies as a slow variable. The fast variable 2y equals the voltage

across R, which due to the smallness of R, diminishes quickly to values

1 1

close to zero. Hence z, qualifies as a fast variable. A similar interpreta-
tion holds for z,. In Chapter 4 we show that this selection of slow and

fast variables is good for a wide class of nonlinear dynamic networks.

2.4 Nested Reduced Order Models

In the previous section we showed how equilibrium and conservation
properties are used to transform a nonexplicit singularly perturbed model to
an explicit one. Writing the explicit model (2.24) in the fast time T and

letting e+ 0 we obtain the fast reduced model

N

d_T = 4,,(0% Z(0) = z(0). (2.35)

Similarly writing the model in the slow time t and letting e~ 0 we obtain

the slow reduced model

::1_1% = Au(o)'y' ¥(0) = y(0). (2.36)

If the eigenvalues of A22(0) have negative real parts the responses of
(2.35)-(2.36) are 0(e) approximations of the response of (2.24) over bounded
intervals [8-~10]. 1If, in addition, the eigenvalues of the slow system

matrix A11(°) have negative real parts the approximation is valid over

unbounded intervals [36].
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It may happen, however, that some eigenvalues of All(O) are zero.
In these cases the approximation is not valid over unbounded intervals
since the response of (2.36) tends to a nonzero constant whereas the response
of (2.24) tends to zero. Treatment of (2.24) as a two-time-scale system
is inadequate because the system may have more than two time scales. Simple
expansions of the eigenvalues and eigenvectors, for example, show that if
A11 is singular the matrix

eAll eAlz

€Ay oY)

which is the matrix of (2.24) in the fast time scale with All’ A12’ A21’
A22’ independent of g, has 0(;2) eigenvalues in addition to 0(l) and O(e)
ones.

Instead of treating the original system (2.11) as a multi-time-
scale one, we prefer to deal with only two time scales at a time. That is,

starting from the fastest time tléT we consider the system operating in

scale tl and t2=et1

2
o(l); we do not specify whether they are 0O(e), O(e ), etc. Changing time

only. Viewed from t1 speeds are 0(l) and the rest are

scales to the slower t2’ some speeds are o(%) and, in time-scale t2, are
assumed to reach their quasi-steady-state instantaneously. The rest of the
system is again treated as two-time-scale with t, the fast time.

To make this idea precise we employ the block diagonalizing

»

transformation [37,38]




ey A

E I- EZHL - el y

where L,H satisfy

2
A - - =
21(e) + ¢ L All(e) A22(e) L-¢ L Alz(e) L=20

and

(2.37)

(2.38)

Alz(a) - H QAZZ(E) + 52 L Alz(e)) + s(All(e) - € Alz(e) L) = 0. (2.39)

In the §,7 coordinated (2.24) becomes
dag . -
Tt (All(s) € Alz(s) L)E

e 8= a0+ La,EnN.

(2.40)

(2.41)

Since A22(0) is nonsingular (2.35) is a regular perturbation of (2.41) and

can be used as a fast reduced order model. However, if All(O) is singular

satisfying Assumption 2.1, (2.40) is nonexplicit singularly perturbed model

in the form (2.11). Hence, arguing as in Section 2.3, we apply transforma-

tion (2.20) to define slow and fast variables in time scale t2.

The process

can be repeated until all time scales are "peeled off'" defining nested

reduced order models.
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2.5 Systems With Inputs

Although some control design work has been done for generalized
singularly perturbed systems [13,14], most of the literature {2-4,39-40]

deals with the explicit model

z+ B, u

y + 4, 1

<.
i

=45
(2.42)

€z = A21 y + A22 z + B2 u

where A,, is nonsingular. Note that in the y-equations the gain of the

22

1
control u is Q(l) whereas in the z-equations it is 0(;). We are interested

in conditions under which the nonexplicit model

eg% = %% = [Ao + eAl(e)]x + [Bo + ¢B(e)] u (2.43)

vhere A_ satisfies Assumption 2.1 and B(e) is differentiable at g¢=0, can
be transformed to the explicit model (2.42).

Assumption 2.3 Let V be a vxn matrix that spans the left null space of

A . Then
o

VB =0 (2.44)

that is, V is in the left null space of B .

Corollary 2.4 Under Assumptions 2.1, 2.3 the transformation

y = Vx, .z =W (2.45)

transforms (2.43) into the explicit model (2.42) with z = - A;;(O)BZ(O)G

where B,(e) = WB_ + ¢WB(e) and U is the slow control.

PO TR R Y

ddl

Aca
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Proof: Follows directly from Theorem 2.2 and (2.44).
Condition (2.44) essentially requires that the control driving

the slow variable y have 0(l) gain, as in the explicit model (2.42).

If this condition is not met the variable y, slow in the free system
(2.11), is subjected to high gain control altering the time-scale behavior
of the system, We will have more to say about high gaiﬁ feedback in the
next chapter. Condition (2.44) is likely to be satisfied in well defined
physical problems as demonstrated by the following example,

1’ L2 are the self-

inductances of the coils, M is the mutual inductance and X;, X, are the

as states, the state description

Consider the transformer of Fig. 2.4 where L

currents through the coils. Using X, X,

of the system is

dxl/dt = - (R1L2/d)x1 + (MRZ/d)x2 - (LZ/d) vy
(2.46)
dxz/dt = (MRl/d)xl - (RZLl/d)XZ + (M/d) 2 .
where d = L.L - M2
e 11X .
In the case of an ideal transformer, d = Lle - M2 = 0. For
nonideal transformer with small leakage
LL -M
172 .
~_T = € (2.47)
Lil,

= . where ¢ is a small positive parameter. Using (2.47) the system matrix

of (2.46) becomes




Fig. 2.4 A nonideal transformer with small leakage.

|
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1
L-"W
= =
'_Elﬁ
m
N
NW

A(e) =

m =

Ik

-
I‘."INW

or, substituting ,/T-g =1 - % + 0(:2)

Ae) =2 (A + eA,(e))

where _ -
!
L —
1 vile
Ao = ’
R, R
L
L "/I:ILZ 2
The left null space of Ao
v=IL o JLLI
and the row space of Ao
W= [R1 -R, V/ ET-]

2

define, according to (2.45), the slow variable
y= Lk +/LL X

and the fast variable

/ L
z=R1xl-R2 -L-2-x2

(2.48)

(2.49)

(2.50)

(2.51)

(2.52)

(2.53)

(2.54)

LN VR T TR Vo S
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In the new coordinates y,z the state equations become

%% = [1/(T 2)]y + [(T -T )/2(T +T )]z - ?%
dz 1 1 1 1 .
e = e[ - /2@ AT )y - [+ - 12
de T, T, b2 T, YT, T,
1 1
-Gt v
Tl T2 i

where Tl = Ll/Rl’ T2

E=-vi
ig into the first equation giving
3 .
" - 1
= [- y- I v, .
Dy dt T1+T2 T1+T2 i

’ L e s
¢ 4
i% LA

™

F! the fast time-scale and setting e=0

-

p-". ~

- dz 1 | 1 1

= == G+ - G+
f} dr '1‘1 TZ '1'1 T2 i
Fé

v
3

L)
.o

y,2z and of (2.54). By writing

L2
PR

y = L% +,./E = L x X, +0(e)=¢n+¢12+0(e)

(2.55)

=L, /R are the time constants of the primary and
secondary R-L circuits. The slow model is obtained by setting €=0 in

the second equation of (2.55) and substituting the quasi-steady-state

(2.56)

(2.57)

The fast model is obtained by writing the second equation of (2.55) in

(2.58)

It is interesting to note the physical interpretation of the new variables

(2.59)

»
anh
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i' € we see that y is, to O(e), the total flux linkage ¢ll +¢12 in coil 1.
ftf e Aggregate physical quantities such as total flux linkage, total charge,
:;é X total momentum etc., are often slow variables.

Noticing that R2x2 is the voltage vy

o of the transformer and using (2.54, (2.56) we obtain as eg—0
;iﬁ R = - (v, +R1xl)./ (V1+R xl) (2.60)

N, are the number of turns in coils 1 and 2. When the voltage

across the secondary winding

_g;z . where Nl’

drop Ri%, is small compared to Vi which is usually the case, (2.60)

r "

reduces to the corresponding relation v, TR \A for a leakage~-free
AR ' 1
RS transformer.
i;f Writing M = JEle NI-g ~ JEILZ (1 - %) we see that, for this

example, Assumption 2.3 is satisfied.

2.6 Structured Singularly Perturbed Forms

: Section 3 dealt with the nonexplicit singularly perturbed form
] (2.11), in which all the states are, generally, mixed. However, it is
O I well known that a more structured system matrix implies that state Xy
Y is predominantly slow. In this section, the methodology developed in
.3q Section 3 is used to study two other structured forms, the fast separated

v form and the weak connection form.

A system is said to be in the fast separated singularly perturbe

form 1if

- PP TR B N . R .~ s L o - o
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A12
(2.61)
T3 K Ay oY) |
where x eRnl X can A A A A are matrices of appropriate
155 7o %8R s By90 Bo0 f210 B9 pprop
dimensions and A22 is a nonsingular matrix., Writing
Al A 0 A A 0
= + ¢ (2.62)
A 0
ST 22 Ay 41 0
we obtain
0 412
Ao = (2.63)
0 A22

which satisfies Assumption 1. Since A22 is nonsingular the range and row

spaces have dimensions n, whereas the left and right null spaces have

2

dimension nl. It can be verified that

V= [I"l A Ay, ] (2.64)

Ww=1[0 I ] (2.65)

span the left null and row spaces of Ao’ respectively, and that

FIF Y
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(2.66)

span the null and range spaces of Ao, respectively., Morover they satisfy

Proof:

D R e TP L . Lot o
AT N A T T i T R U . I R e S e T T P P P L

(2.13).
Corollary 2.5 1If A22 is nonsingular, then (i) the change of coordinates
y =x, - A A-l X z = X% (2.67)
1 12722 722 2 ‘
transforms (2.61) into the explicit model (1.1) with z(t) = 0. (ii) The
slow reduced model of (2.61) is
.‘.12 = - -l v
dt - @11 T Ahy, AT (2.68)
and the fast reduced model is
dz _ ~
qr A22 z (2.69)

(iii) The state %, of (2.61) is predominantly fast whereas x, is mixed.

1

(1) follows directly from Theorem 2.2, using (2.64), (2.65). (ii)
is obtained by bearing in mind that z(t) = 0. (iii) follows by inverting

(2.67)

X, =y +A all 4,

12897 X, =z . (2.70)

Note that state X, (=2z) can be used in the fast reduced model (2.69)

justifying the name '"'fast separated."
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k
We now turn to the weak connection form which arises naturally in -1
dynamic networks made of weakly connected "areas" [24~29]. A system is 2
* .
said to be in the weak connection form if( ) %
[~ - — - r— - r - ‘
«:lx1 dxl R ]
3t dr Arrtedyy €A1z X 3
£ = = (2.71)
dx dx ]
2 2 - B |
| || [#a Aaatehyy | | %2 ]
N
where x1 and X, are n,- and n,- vectors, All’ All’ A12’ A21’ A22, A22
are matrices of appropriate dimensions and All’ A22 are singular matrices -4
-l
with a complete set of eigenvectors corresponding to the zero eigenvalues, ]
that is, satisfying ]
nl nz ~
R@A;) @A) =R, RA,,) ® NA,,) =R (2.72) 1
A
with §
dim R(Au) =0 >1, dim n(All) = v >1, Y + v; =1y (2.73) T
. . ;9
dim R(Azz) = 9, 21, dim 7z(A22) = v, 21, Py + v, = n, . {2.74) ;
Writing ]
Anttn *A12 Ap O Al A |
N - = + ¢ N (2.75)
491 Axatehys 0 Ay A1 Ay ;
) 3
For convenience we deal with only two weakly connected "areas" B
but the ideas are directly applicable to any number of areas.
k
1
.1
]
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we obtain

A = (2.76)

which, because of (2.72), satisfies Assumption 2.1. Let Vi’ Wi span the
left null and row spaces of Asg and P Qi span the null and range spaces,

respectively, i=1,2, satisfying

VP, =1Iv, WQ =1Ip, i=1,2 . (2.77)

s (2.78)

transforms (2.71) into the explicit model (l.1) with Z(t) = 0. (ii) The

slow reduced model is

Y1 Vidir B Vidn B 1
d .
4 - . 2.79)
Y, VoA By Vy A0 By Y,

and the fast reduced model is

2 WAL e A9 €W;81,Q, Z)
d
T A . ] . . (2.80)
2 WA 28220 teEW,A,5Q, )
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Proof: (i) Apply Theorem 2.2 noting that %
V1 0 wl 0 :
V= , W= (2.81) p

0 V2 ' 0] w2

span the left null and row spaces of Ao’ respectively. (ii) is obtained

by keeping in mind that z(t) = O.

There are few interesting points to be noted. From (2.78) a
slow vector Y1 and a fast vector z, are defired in terms of area X only;
similarly for X,. From (2.80) the fast variables z),2, are only weakly é

connected to each other and since Wi Aii Qi’ i=1,2 are nonsingular these

Lagts

connections can be neglected for an 0(e) approximation. The fundamental

difference between the original (2.71) and the transformed system (2.80)

o)

is that (2.80) no longer has a coatinuum of equilibrium poiats. Hence,

[
NVl ey

each area defines a local fast model z; connected with O(e) connections

to other local models, whereas contributions ¥i from each area form a

t: Yslow core" describing the system-wide dynamics of (2.71). It is shown I
:t in Chapters 3 and 4 that this decomposition carries over to nonlinear 3
k- o
r‘.

weakly connected systems.
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CHAPTER 3

NONEXPLICIT SINGULAR PERTURBATIONS IN NONLINEAR SYSTEMS

3.1 Introduction

An asymptotic procedure for time-scale separation in nonlinear
models is of paramount importance since a nonlinear analog of the algebraic
transformation in [37,38,41] is not available. 1In this chapter we give such
a procedure and demonstrate its application to classes of nonlinear systems,
The coordinate free characterization of singular perturbations [16] is
extended to nonlinear systems of the form ex=h(x,e) and it is shown that
equilibrium and conservation properties lead to a definition of new
coordinates in which time scales are explicit (Section 3.2). In Section
3.3 we study a class of nonlinear high gain feedback control systems in
which the controls enter linearly through a constant matrix but the open
loop system, the output map and the feedback law may all be nonlinear. It
is shown that these systems can be studied through singular perturbation
techniques after they are transformed to the explicit form using the
method of Section 3.2. The last section, 3.4, is devoted to interconnected
systems whpse isolated subsystems posses equilibrium and conservation
properties. It is shown that in such systems weak connections give rise
to two-time-scale behavior. Separation of the time scales defines a slow
"core'" which describes the system-wide behavior and a set of fast '"residues"
describing the local pehavior of eacg subsystem., The decomposition, known

for specific classes of linear models such as Markov chains [42-43] linearized

models of power systems [24-28,44}, electrical networks [44,45] and economic

. . . . . ., < e - S el -
S ol ® a 3 . . b PRSP U P ST W G S S DGl Ui SN W WA WA Uit D i WO GDT W S R W ¥
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systems [46] where it appeared for the first time, is established for a
wide class of nonlinear systems with common features (i) equilibrium and
conservation properties and (ii) weak connections between subsystems.
Using this decomposition we give decentralized stability cirteria for this

class of systems, analogous to those in [47-49].

3.2 Conservation and Equilibrium Properties in Nonlinear Systems

The need for coordinate free characterization of time scales in
nonlinear systems is more pressing than in linear systems. Wide separation
of eigenvalues provides some characterization in linear systems but the
notion of modes is nonexistent in nonlinear systems. It will be shown in
this section that the conservation and equilibrium properties introduced
in Chapter 2 for linear systems can naturally be extended to nonlinear
systems and that they lead to a new set of variables in which the time
scales are explicit,

To motivate the discussion we re-examine the explicit model (1.1)

from a different point of view. Writing (1.1) in the fast time scale

dy .
dT ef(y,2,¢)

(3.1)
% = g(y,z,€)

and setting €=0 we obtain the auxiliary system

dy _ ’
dr 0
(3.2)

d
-;:- = g(y,2,0)

which has the following two important properties.

b T 1Y

| S

ol il
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n . Conservation Property A function of the state
L o(y,z) =y (3.3)

remains at its initial value ¢(y(0), 2z(0)) = y(0), that is, it is comserved
during the motion of (3.2).

Equilibrium Property System (3.2) possesses a set of nonisolated

(continuum) equilibrium points defined by

g(y,2z,0) =0 . 3.4)

The equilibria defined by (3.4) are the "quasi-steady-states" to which the
fast transients of (3.1) converge as explained in Chapter 1.

A generalized version of (3.1) is a system in the form

dx _ dx _
€ it - ar h(x,¢) (3.5)
which in T-scale at ¢=0
dx _
i; - h(x,0) (3.6)

has equilibrium and conservation properties analogous to the properties
of (3.1). System (3.5) is studied in a domain DcRnx[O,EO] in which
function h is assumed to be continuously differentiable with respect to

x and ¢.
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Assumption 3.1 System (3.5) satifies the following conditions for

%*
existence of manifolds( ) S and F.

Equilibrium Manifold S The set

s = {x|h(x,0)=0, x€D} (3.7

defines a y-dimensional differentiable manifold, y > 1. Hence, there
exists continuously differentiable function @:RnaRp, p=n-y, rank §£=p,

¥ X€D such that
©(x)=0 <=> h(x,0)=0 (3.8)

that is, in the domain of interest D, every equilibrium of (3.6) satisfies

@(x)=0 and every x satisfying ¢(x)=0 is an equilibrium of (3.6).

Dynamic Manifold FA There exists continuously differentiable function
o

c:RpﬂRv such that for each x(0)=xo the p-dimensional (p=n-y) manifold

X

P, = (xlomrot)=0,  rank 82 - ) (3:9)

in an invariant manifold of (3.6) that is a trajectory originating in Fx
o

remains in F
Xo

a(x(1)) - a(x)=0, Yt>0 . ' (3.10)

%
( )Mani olds are generalizations to R® of objects such as curves
and surfaces in R®. More precisely, ‘let 5 :R™=R" be a continuously differenti-

able function from R™ into R™. Then if the set M = {xlé(x)=0 and g& @(x)'has

rank m} is nonempty, it is an r-dimensional manifold, r=n-m [50,51].
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Moreover, for all xOED, manifolds § and Fx are not tangent to
o

each other, that is, for all x in the intersection of S and Fx
(v}

el
3x
, rank =7 . (3.11)

3g
oxX

Theorem 3.2 Under assumption 3.1, the change of coordinates

y=o(x) , z=p (x) (3.12)

transforms (3.5) into the separated explicit model (1.1) with gﬁ 0
E=

nonsingular and Z(t) = O.

¥
.

Proof: Differentiating (3.10) and using (3.6) we have

T 2 i}
. 2 n(x,0) =0 . (3.13)

i - Differentiating y=¢(x) and using the mean value theorem in ¢ for each

component of h

dy _lzo = 2o ph
= f Sk hOne) = S0 (3.14)

we see that y is the slow variable of (1.1). Using the inverse trausforma-

tion x=y(y,z) of (3.12) which exists because of (3.11), and differentiating

z=p(x) we obtain

= Zhe) = R uiyy,2),0 & 0,29 . (3.15)




- V7T
e

3 3/
Lt
P RS I ]
A AP
St atet et

Ty . Y e
AR & SRkERRENRE
RS I RN

40

We show that (3g/3z) is nonsingular by contradiction. Assuming that
e=0

it is singular the equilibrium manifold of (3.14)-(3.15) has dimension

greater than vy which is contradiction because (3.12) is a nonsingular

transformation. Finally from x€S <=> x=y(y,0) it follows that h(y(y,0),0)=0

and
g(y,0,0)=0 (3.16)

implying that z(t) = O.

The intuitive idea behind this theorem is illustrated by Fig. 3.1.
I1f the equilibrium manifold S is attractive, the trajectories of (3.6)
which are confined to some F due to (3.10), converge to S and when T—®
they terminate at the intersection of F and §. Instead the trajectories
of (3.5) rapidly approach S staying in a boundary layer close to F and
then slowly continue their motion remaining close to S. Since the
trajectories are initially close to F the quantity g(x) stays almost
constant during this interval; thus it qualifies as a predominantly slow
variable. On the other hand, the quantity ¢(x), which is large away from
S where the trajectory starts, rapidly diminishes when the trajectory

approaches S; thus it qualifies as a predominantly fast variable.

As an illustration we consider (3.17)

dx1
T T O ) 9y () - exy
dx
2 3
o = -2x2 Py (x) - €x, 3.17)

dx3
e ¢1(x) + (x1+x3) ¢2(x) - EX,

. .
Lot

sndde d

o v
Al Ao d

AL

[ 2 Y-
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3
over R- DD = {(xl,xz,x3)| X, > 1, X, > 0.5, X3 > 0.5} where ¢l(x),¢2(x)
are continuously differentiable functions defined over D. Setting &=0

in (3.17) we obtain

- 9 (0 + (xpHRy) @, ()

dr = '2x2 (Pz (x) , (3.18)

Tr T e () + (xytxg) @, (%)
for which

@, (x)=0 ’ ¢, (x)=0 (3.19)

define the equilibrium manifold S. It is easily verified that the

dynamic manifolds are defined by g(x) = o(x(0)) where
o(x) = (x;+x3)x, . (3.20)

The equilibrium manifold and a dynamic manifold of this system are

shown in Fig. 3.1 where functions pp>P, were chosen as

AL A A e 4

. - 2
o ¢1(x) =X "%y s ¢2(x) = x2-x3-x1+1 . (3.21)

3.3 High Gain Feedback and Disturbance Rejection

»

Use of high gain in feedback loops has been known to reduce the

effects of disturbances, parameter variations and distortions [19,52].

i- Early investigations using root locus techniques [53] have shown that
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" under high gain some poles of the closed loop system tend to infinity, a

characteristic of singularly perturbed systems. Similar behavior is
exhibited by multivariable systems [54]. An extensive study of high gain
in Linear Ti;ne Invariant (LTI) systems was undertaken in [17,55] where it
was pointed out that every high gain system is a singularly perturbed one
and vice versa. In this section we show that the relation between high

gain feedback and singular perturbations extends beyond the class of LTI

systems.

) We consider the system
x = £(x)+Bu

T (3.22)
e y = 8(x)
. under the output feedback
- 1
hS u = ~k(y) (3.23)
- and we study the behavior of the closed loop system when the gain %——m .

The state x is a n-vector and the input and output vectors both have
dimension m « n. Functions f,g are defined in a domain DxCZ Rn and function
k is defined in a domain Dyc: R, All functions are assumed to be differenti-
e able a sufficient number of times. Moreover we make the following basic
assumption.

Assumption 3.3 (a) Matrix B is full rank. Hence, there exists a vxn

»

(v=n~m) matrix V, rank V=y, such that VB=0,

*
(b) There exists a unique set point y €Dy such that

k(y') = 0 (3.24)

- . - T - - - - A
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) - - - " . - . . . . w . L : ‘ o c. * N . . . - - . N N
I B Y I A LT R S N e e o . T T T S S S S S



“u “-.’ ..'I

44

v
(c) Matrix[ gx} , where 8, is the partial derivative of g, is

nonsingular V¥ xer satisfying g(x)-y* = 0.

Part b of the assumption could be relaxed to allow isolated roots
of (3.24). However, nonisolated roots which imply dead zones are éxcluded.
When the output is linear in x, y=Cx, Assumption 3.3(c) requires [‘(It:l to be
nonsingular which is equivalent to the assumption of [17,55] that CB is
nonsingular. Indeed if Assumption 3.3(c) holds [X] B = [C%:] must be
full rank and (CB)-1 exists; conversely if (CB) ~ exists the row space of
C and the left null space of B are disjoint and [X] is nonsingular.

Theorem 3.4 Under Assumption 3.3 the transformation

S )
oy (3.25)
g(x)-~y

N
]

transforms the high gain system (3.22)-(3.23) into an explicit singularly
- \

perturbed form with z=0.

Proof: Substituting (3.23) into (3.22) and rescaling the time, T=t/e we

obtain

%% = ef(x) + Bk(g(x)) (3.26)

whose auxiliary system is

g; = Bk(g(x)) : (3.27)

*
We temporarily change notation letting v_ instead of y denote

the slow variable. The latter has been reserved tof its more traditional
use as an output variable,

<«
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Since by Assumption 3.3(a)
V%f = VBk(g(x)) = 0 (3.28)
the relation
o(x) =Vx, o (x)=g (x(0)) (3.29)

defines the family of m-dimensional dynamic manifolds. By Assumption
3.3(b) all xGDx satisfying

*
g(x)=y (3.30)

are equilibria of (3.27). Assumption 3.3(c) implies that (3.30) defines
a (n-m)-dimensional equilibrium maniféld which is transversal to the
dynamic manifolds. The transformation is simply an application of
Theorem 3,2.

In the new coordinates (3.22)-(3.23) becomes

dyS - v
TE' =V (Y(ys:z))

dz (3.31)

*
€ gc = €8, f(v(y,,2) + g Bk(zty )
where x=y(yx,z) is the inverse transformation to (3.25) which exists

because of Assumption 3.3(c).

Corollary 3.5 If (i) Assumption 3.3 is satisfied and ({i) the boundary

layer system .
dz _ -~ %
- =8, Bk(zty ) (3.32)
x=y(y,2)
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is asymptotically stable, the response of (3.22)-(3.23) is approximated,

over a bounded interval [0, T], by

~
x(t) = yF (6, 2(0) + 0(e)
(3.33)
y(t) =z +y + 0()
where'§s(t) satisfies the reduced system
dyS 0
T - VE(y G0 (3.34)

Proof: Follows immediately from Theorem 3.4 and standard singular

perturbation results,

From (3.33) the output differs from the set point y* by the
predominantly fast variable 24+0(e). Hence, any disturbance that can be
modelled as initial condition will appear in the output only over a short
initial interval. ©Note, however, that with the assumptions in Corollary
3.5 the approximation (3.33) is valid only over a bounded time interval
{0, T]. Under stronger conditions, which essentially amount to
stability requirements on the slow system (3.34), the approximation is
valid over unbounded intervals [36] and disturbance rejection is indeed
achieved.

Note also that the dynamic manifold defined in (3.29) is linear
because we assumed that the input enters linearly through a constant
matrix, If in addition the output is linear in x, the equilibrium mani-
fold is linear too and (3.25) is a linear transformation. In this case

the boundary layer system (3.32) depends on z only and application of
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Theorem 3.4 and Corollary 3.5 is greatly facilitated since transformation
(3.25) can be inverted explicitly and stability of (3.32) can be checked

more easily. The following example illustrates the discussion above.

Example 3.6 The output of

il = fl(x)+u X,
s = X = (3.35)
X, f2 (x)+u X,
= x2+x 3 36
YT (3.36)

is fed back through the high gain law
1 3
u = k() = ey (3.37)
This system satisfies Assumption 3.3(a), 3.3(b) and
*

v={[1 -1], y =0 . (3.38)

It also satisfies Assumption 3.3(c) if we restrict the region of validity

to x; 2 0.6. Transformation (3.25) becomes

=N =
N

+X ©(3.39)

N

with inverse

-l +,/ 1+ (ys+z)
2

x, = )
— (3.40)
-1 + 4/ 1+4(ys+z)
x2 = 3 =Yg
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K
and the transformed system is ?
dy, :
- [£,00-£,(0)] _ ]
x=y(y,,2) (3.41)
dz _ 3 3
€ = = e2x_ £ (x)+£f, (x)] - [+ Wy +z) ] (2427) . .
dt 171 2 _ - s ;
_Y(ysyz)
Since the boundary layer system +
ar 1+4(ys+z) (z+z7) (3.42)
is asymptotically stable in the region of validity, approximation (3.33) #

holds for large enough gain.

Transformation (3.25) can also be used to analyze disturbance

rejection when the disturbance is modelled as an input. Consider

x = f£(x,w(t)) + Bu

(3.43)
y = 8(x)
under the output feedback

_ 1 4

u = ;k(y) (3.44)
whose difference from (3.22)-(3.23) is that the disturbance w(t) appears ]
as input to the system, Substituting (3.44) into (3.43) we obtain 1
3

dx

€ 3c - ef(x,w(t)) + Bk(g(x)) (3.45) 3
3

which, under Assumption 3.3, can be transformed to

—nlaldid.

..............................
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;:' " dTyf— = VE(y(y,,2)5 W(E)E E(E,y,,2)
2. (3.46)
ii :; ' € %% = eg f(y(y,,2),w(t)) + ngk(Z+y*) e ‘(t,ys,z,E)
;; using (3.25). In the following corollary we make use of a theorem in [36]
5}% ﬁf which, for convenience is reproduced in Appendix I.
: -
g. L Corollary 3.7 Assume that w(t) is such that E,é, satisfy all the
}E Ei conditions of the theorem in [36]. Then under Assumption 3.3 and for high
- enough gain % the output of (3.43) remains O(e) close to the set point y*

for all tg [0, =).

Proof: Since the boundary layer system of (3.46)

dz _ *
reli ngk(E4y ) (3.47)

~ * *
has z=0 as its unique equilibrium and y(0)=y implies z(0)=y(0)-y =0,

the fast part of z is z(1)=0 V¥ t€ [0,=). Furthermore, Z(t)=0. Hence,
%* %*
y(t) = z(t) +y =y + 0(e) (3.48)

by the theorem in [36].

The practical use of the above corollary may be limited since it
assumes that w(t) is known so that the assumptions in [36] can be checked.
A much more desirable result would be to establish (3.48) for a class of
inputs w(t). Such a result should d;aw upon the specific way in which the

disturbance enters into the problem.
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3.4 Interconnected Svstems

An appealing approach to large scale system analysis and design
is to view the system as a collection of dynamic subsystems interacting
through static interconnections. The object then is to analyze the
stability of [47-49] or design control laws for the system [56] in a
decentralized fashion, that is, by testing the stability of the subsystems
or designing feedback control using only the subsystem states or outputs.
This approach is based on the premise that the connections between sub-
systems are 'weak'" compared to the internal connections; hence, qualitative
properties and control design can be performed on the subsystem level.

In this section we show that when subsystems have equilibrium
and conservation properties, weak connections give rise to two-time-scale
behavior. Subsystems are weakly coupled* in the fast time scale but are
strongly coupled in the slow one. We start by showing that such cases
arise naturally in high gain decentralized output feedback. Consider the

interconnected system

e
I

fi(xi) + hi(x) + Biui

i
y; = 8;(x)) i=1,...,4 (3.49)
X = [x{ R x}‘]T

with decentralized output feedback

%
We use the word '"connection" to mean physical, static interaction
and the word '"coupling" to imply dynamic interaction.
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u =

1
i €

ki(yi) i=l,...,4 (3.50)

~

vhere B, g k, satisfy Assumption 3.3, i=1,...,{. Substituting (3.50)

into (3.49) and rescaling the time T = % we obtain

dx A
i - a - .=
i Bi ki(gi(xi)) + e(fi(xi)+hi(x)) i=1,...,4 (3.51)

whose subsubtems

dxi A
rrale Bi ki(gi(xi)) i=l,...,4 (3.52)

have equilibrium and conservation properties as arz.ued in section 3.3,
Generalizing (3.51) we consider weakly interconnected systems
of the form

dx

i _ .
i fi(xi,e) + egi(x,e) i=1l,...,4 (3.53)
nj
where fi is defined on a domain Dix[O,si]c:R X R, g; is defined on
ox(0,clc R x R, x=[x{ oo 'i]T and n = ¢ n, . Functions fi and g, are

i=1
assumed to be sufficiently smooth. In (3.53) fi(xi,e) represents the ith

isolated subsystem [47] whereas, egi(x,a) represents interconnections with
other subsystems. Although the dependence of fi on & may seem superfluous,
it is sometimes needed to assure the existence of equilibria of the isolated
subsystems; such a case is discussed in the next chapter in relation to
dynamic networks. Concerning the isolated subsystems we make the following

assumption.

Assumption 3.8 Every isolated subsystem

dx

i
a fi(xi’o) , i=1,...,4 (3.54)
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has equilibrium and conservation properties. That is

(1) the set
8; = [xilfi(xi,0)=0} (3.55)

is a vi—dimensional equilibrium manifold of (3.54), 0 < v, <ng; hence,

ni p.
there exists smooth function ¢, :R "~R 1, Py ~vy s such that

¢y (x4)=0 <> £, (x;,0)=0 (3.56)

n. Vi
e . . 1 1
(ii) there exists function ci:R -R such that

F; = {xloy () = oy (x; (O] (3.57)

is a family of invariant manifolds of (3.54) parametrized on oi(xi(O)).

Moreover, Si and Fi are nontangent, i.e.

Pix
rank =n s Y xiEDi (3.58)

°':i.x

where ¢ix,c.

ix 2re the Jacobian matrices of ®, 0

i

Corollary 3.9 Under Assumption 3.8 the interconnected system (3.53) is

a two-time~-scale system and the transformation

y. = o, (x;)
S i=l,...,4 (3.59)
2 = ¢ (%)
4
transforms (3.53) into an explicit model with v =% v; predominantly slow
) i=1
variables y and p = % Py predominantly fast variables z for which Zz=0.

i=1
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Proof: Isolated subsystems (3.54) form the auxiliary system of (3.53)

obtained by setting &=0.

Defining
ml(xl)w o, (%))
vy (%)) o, (%,)
ox) = | . ; o(x) = | . (3.60)
‘Pz(xz) cl(xl«)

we obtain equilibrium manifold ¢(x)=0, and dynamic manifolds ¢(x(7))=c(x(0))
of the interconnected system satisfying Assumption 3.1. The conclusion is
then an application of Theorem 3.2.

Note that the dimension of manifold S.1 of each subsystem is
allowed to take extreme values 0 and n, . When vi=0 (3.54) has at the most
isolated equilibria and its dynamic manifold is the whole space Rni; when
vi=n, (3.54) is made of n, integrators and its equilibrium manifold is Rni.
Note also that transformation (3.59) is block diagonal in the sense that

y. and z, are defined in terms of subsystem state x, only.
i i i

Noting that

xi = Yi(yi:zi)

(3.61)
x = y(y,2) = [Y(yl’zl) - e Yz(yz,zﬁ)]

»

is the inverse transformation of (3.59) which exists due to (3.58) and

rescaling the time t=et the transformed model is
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dyi _ afi(Yi(yi:zi)’e)
dat ix

—_— =g e

+ 8i(v(y,2),e):| 4 F . (y,2,€)
dz (3.62)
'd—ti = @5, (£ (v (9452;),8)+es, (v(y,2),€)] 2 Gy (¥, 25 ,€) el (¥,2,€)

where ¢o.

ix°Pix are the partial derivatives of PR with respect to X, .

Accordiag to Corollary 3.9 the quasi-steady-state is z=0, and the slow

model is

a5,

rralie Fi y¥,0,0) i=l,...,4 - (3.63)

Rescaling back to T and setting €=0 in the second equation of (3.62) we
obtain the fast model

dz,
i _ ~ -
el Gi(yi,zi,o) i=l,...,4 (3.64)

where Y; appears as a parameter.

is

Note that F, is a function of the whole ¥y vector whereas, G,

a function of ;i only. Hence, separation of time scales has resulted in

a decomposition in which parts from every subsystem are put together to

-

form a slow core (y-variables) while the rest of each subsystem forms a

el
]
s
.-
.
.
SOIN
bt
e
ﬁ
—— ]
e Tiv

T

fast residue (zi-variables). The slow core describes the system-wide
dynamics which due to the weak connections between subsystems become
significant only in the long run. The fast residues describe the local

}:. dynamics which, due to the strong connections within subsystems, are

significant in the short run. 1f further, the fast residues are asymptoti-

cally stable the zg variables reach quickly their quasi-steady-state
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equilibrium {Ei=0); hence, they are weakly coupled with each other since
interaction from subsystem to subsystem through the weak connections
becomes noticeable only in the slow time scale. (See (3.64)). Figure 3.2
gives a pictorial view of the discussion. This decomposition is very
reminiscent of Simon and Ando's reasoning in their classical 1961 paper
[46]. We quote:

(1) We can somehow classify all the variables in the economy
into a small number of groups;

(2) We can study the interactions within the groups as though
the interaction among groups did not exist;

(3) We can define indices representing groups and study the
interaction among these indices without regard to the interactions within
each group.

Step (1) corresponds in our case to identifying subsystems
connected to each other through weak connections. Step (2) corresponds.
to our fast models (3.64) which are disconnected; we went one step further
to remove the slow motion from each subsystem. Step (3) corresponds to
the definition of slow variables y; as "indices" representing subsystems
and the study of the system-wide dynamics through the slow core (3.63).
In the next chapter where the decomposition is specialized to dynamic
networks, the slow "indices" take the meaning of aggregate physical
variables.

»

There is an extensive literature devoted to stability analysis

of interconnected systems [47-49 and references therein]. The general

plan followed is (i) to regard the large scale system as an interconnection
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of isolated subsystems, (ii) to characterize stability properties of
isolated subsystems through Lyapunov’ techniques, (iii) to deduce stability
properties of the overall system from stability of subsystems and the

nature of interconnections. A basic assumption in [47,48] is that the
subsystems have isolated equilibria and the results of [47,48] do not
direcgly apply when the subsystems have nonisolated (i.e., a continuum of)
equilibrium points such as in (3.53) with fi(xi,O) satisfying Assumption 3.8.
We now show that stability criteria analogous to those in [47] can be
derived based on recent results [26] on stability of singularly perturbed
systems. For convenience, these results are reproduced in Appendix II.

We consider the interconnected system (3.53) when fi(xi,O)
satisfies Assumption 3.8. Using transformation (3.59) we obtain the system
in the explicit singularly perturbed form (3.62). We assume that

Vi P
cR a z,€D_CR +

y
i i
equilibrium of (3.62). Moreover the following assumptions are made

inD i=1,...,4 and that y=0,2=0 is the unique

concerning the slow core, the fast residues and their interactions.

Assumption 3.10

(1) The slow core (3.63) has a Lyapunov function V:R“-R+such that for all

D
y€ y

; T 2
[VyV(}')] F(y,0,0) < - Q’l‘y (Y)r 01 >0
where y(y) is a scalar valued function of y with y(0)=0 and y(y)#0, y#0.

(i) Every isolated fast residue (3.64) has a Lyapunov function

Vi Pi
wi(yi’zi)'R xR --.R+ such that for all yiEDyi’zieDzi

T 2
[vziwi(yi’zi)] Gi(yi:zi’o) S T i ¢i (zi) 24 > 0.

W R W
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(iii) There exists Xy >0, i=1,...,4 such that for all yEDy, zEDZ

following hold:

4 2
@ [V, ;.21 Fy(,2,6) S RS AC

® 19, V1T FO,2,0F0,0,01 58 ¥®) @Ay iz nt

2
i
)]
2
@ 17, 4 0y.2)) B Gaze) <k T B
i i=1 -

Constants ci,ﬁ, kli,k2

are all assumed to be nonnegative numbers.

the

Theorem 3.11 If Assumption 3.10 is satisfied and ¢ is sufficiently small

the equilibrium (y=0,z=0) of (3.62) is asymptotically stable.

Proof: Let

(3.65)

be a tentative Lyapunov function for the boundary layer system, formed by

the z,-systems, i=l,...,4, in (3.64). Then,

2
v, W(y,2)1T 6(y,z,0) = i§1 Ay vzi W, (y;,2;) 6,(y;5%;,0)

1A

L 2 2
- Zl l’l a2i ¢1(zl) <- ) ¢ (2)
1=

where

2 2 .
¢ =y ¢ (z;) - @ min

(3.66)

(3.67)

Hence, V(y),W(y,z) satisfy condition (I), (I1) of [20]. Condition IIla

of [20] is also satisfied since

v
MY

P |

e

Doz




59

L) 7, 81" F@aze) = Ty Loy W 0,2)1 F 42,0
R 1 * (3.68)
4 2 _ 2
RO sEn e P = @) @
R 1 1
’l = whereas condition IIIb is identical to (iiib) in Assumption 3.10.
il Finally, letting
z L - _
Y G, (¥52,€) = 6y (35,2,,8) + ¢ H (5,2,¢) (3.69)
:?; " we have
i L T - ~ a
b E [vz W(y,Z)] [G(y,Z,E) - G(Y,Z,O)] =
o =" .-. T _ .

::. E [vzi wl(yi’zl)] [Gl(yl’ziﬁa) - Gl(yisfl)o) + € Hi(y,Z,E)] < (.5.70)

ex k. d2z) + ek 3@ < e K ¢ ()
i 11 i1 2 = 1
where
kl. ‘
K, = max — + k (3.71)
1 A 2
n i i

if and we see that condition I1Tc of [20] is also satisfied. The conclusion
o
Ei follows directly from [20].
B
. 3 A similar procedure cannot be applied to the original model (3.53)
v because the isolated systems possess a continuum of equilibrium points. The
t:“. ! basic difference between (3.53) and (3.62) is that in (3.62) all the slow
32 T dynamics giving rise to equilibrium manifolds have been relegated to the
2 .
b2
- slow core; consequently, the fast residues no longer have a continuum of
E! [j equilibrium points. The stability criteria become easy to apply when the
- transformed models are structured, such as in dynamic networks, the subject
- L of the next chapter.
o
| )
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CHAPTER 4

REDUCED ORDER MODELING OF DYNAMIC NETWORKS

4.1 Introduction

Much of the equilibrium-conservation reasoning presented in
Chapters 2 and 3 was inspired by the study of time scales in power systems
and other weakly connected networks. In this class of systems, which is
the subject of the present chapter, states and connections have physical
meaning and separation of time scales is related to physical laws such as
conservation of mass, charge, momentum, etc.

Section 4.2 discusses weakly connected networks with linear
storage but nonlinear interconnection elements. The main result is that
the transformation that brings the system into the explicit singularly
perturbed form is linear. 1In the new coordinates a slow core describes
the system-wide behavior while fast residues describe the local behavior
of the network. The slow core turns out to be another '"aggregate' network
whose states and connections are related in an intuitively appealing way
to the states and connections of the original. These results are then
specialized to power systems and a five-machine example illustrates the
reduction procedure (section 4.3); simulation results are also shown.

In section 4.4 we clarify the relation between coherency and localizability

[24-25] for LTI systems.
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N
!! 4.2 Time Scales in Nonlinear Dynamic Networks
LN The time-scale separation methodology developed in the previous

chapter will now be applied to nonlinear dynamic networks, a class of

large systems whose structure facilitates the derivation of reduced models

e AL PLR LI —  RE S
1

with physical meaning. The dynamic networks we consider are systems

ey .

comprised of storage elements, capable of storing some physical quantity

and interconnection elements capable of transporting this quantity without

. ---_-
KT
.’,‘. o
LRI .-

delay. Examples of dynamic networks include power systems, where angular

momentum stored in the generators is transported through transmission lines,

¢ W T XN .
AT SN

if R~C networks where charge in the capacitors is transported through resistors,

mass-spring systems, etc. The dynamic networks considered first have

¢

storage elements with linear characteristics but their interconnections

may be nonlinear. Extension to networks with nonlinear storage elements

is indicated later in the section. The rates of flow in the interconnections
are assumed to be continuously differentiable functions of the potential

differences across the interconnections satisfying

Egmx) = = i (x0%) (4.1)
This assumption is equivalent to saying that there are neither sources

nor sinks along the interconnection. The dynamics of these systems are

then modeled by either the system of first order equations

. 1
X, ® = = [ z £ (x -X ) -1 ] (4.2)
i m, keki ik*"1 "k i

or the system of second order equations

2 - - L - -
T, [kezk £ mx) - 1yl (4.3)

i

2l
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where X0y the potential and inertia of the ith storage element, Ii

the net injection at the ith element, fik(') the characteristic of the
interconnection between elements i and j and ki the set of elements to
which 1 is connected. In the remainder of this section we deal with
dynamic networks in the form (4.2). In the next section the results will
be applied to power systems whose equations are in the form (4.3).

A dynamic network is said to be weakly connected if some

interconnections can be expressed as multiples of a small parameter e¢. The

model of a weakly connected network is then

dx

i 1
— == T £, (x.-x ) +c€ g..(x,-x.) - L, (e)] 4.4
dr m, ke, ik“i Tk jeEJi S R Sl i

where Ki’Ji are index sets representing nodes connected to element i.

Constant I,, which depends on and is differentiable with respect to g, is a

i
net injection (of power or current) at node i. 1Its dependence on ¢ will be
discussed later. A fundamental property of weakly connected networks is

that neglecting the weak connection terms egij results in y isolated "areas"
o=l,...,v. Area ¢ contains n connected nodes and its equation is obtained

o
by setting €=0 in (4.4)

i 1
dr =- ;i. [k z fik(xi-xk) = Ii(o)]s iEO', a:l’...,\), (4‘5)
€K,

»

When the states in each area are ordered consecutively the nxy partition

matrix U is

e

223

2oy

e |
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(" U = diag (up,-..,u) (4.6)

where u, is an nd -vector with all elements one.
Assumption 4.1 Each of the y areas formed by setting e=0 in (4.4) has an
equilibrium state.

In the case of power systems the above assumption requires that
every area, when isolated from the rest of the system, has its own load
flow. This will only be possible if the area adjusts its net injectioms
Ii(e) so that the power exchanged with other areas is compgnsated internally.
Thus, the injections Ii(e) are made functions of the strength of the inter-
area connections €. The choice of the deéendeﬁce of Ii on ¢ and its impact
on the accuracy of the reduced models will be discussed later in the section.

(*)

In each area p we select a reference node X, € o , and form

the difference sir = x:-x: for r€q and ¥ i€a, i#r, where x:,x: are the

values of X 5%, at an equilibrium x® of the area model (4.5).

Theorem 4.2 System (4.5) has an equilibrium manifold S described by

¢i(x) = KX -8, = 0 4.7)

for r€g; ¥ i€a, i#r and all areas g=1,...,v. The dynamic manifold
o F_ for x(0)=x is
F o i

CO’(X) = O’a(xo) =0 ’ Q'-ls---)\) (4.8)

R A RN

- ii where

4.9)

ca(x) = 3 mixi/ T m .

lea i€a

L $ TRPRIRER
]

*
( )Abusing notation, we let 4 be the index of an area as well as
the set of node indices in the area.
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Furthermore,

v, = e, ’ z, = @ (%) (4.10)

are v slow and p=n-y fast variables satisfying Theorem 3.2.

Proof: Any x satisfying

X, -x, = x‘;-x: Y 1,k€q, a=l,eeesv (4.11)

is an equilibrium of (4.5). Following a path from node i to node T,

these relations can also be written as

e

e
Rl R T DAL R R T ITY L R A e S DA N e o e

(4.12)
r€g; Y i€q, i#r, Vo
which is the expression in (4.7).
Writing (4.5) at an equilibrium

1 e e
0s=- n; [k T f (X)) - 1,(0)] 1€o, o7l,...,v (4.13)
€K, '

and using (4.l1) we obtain
z 1 (0) =0 ’ a=l,...,\) . (4.14
1€y 1L )

The last relation gives

T mi(dxi/dT) =0 s a=Llyeee,v (4.15)
i€y

]

where (4.1) was used once more. The dynamic manifold (4.8-4.9) is obtained

by integrating and scaling (4.15). Finally the transformation (4.10) is an

application of Theorem 3.2.

al

F Ay LY
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] Note that although the model is nonlinear both the equilibrium

. manifold (4.7) and the dynamic manifold (4.8) are linear leading to a
linear transformation separating the time scales. Manifold S is linear
because the right-hand side of (4.5) is a function of a linear combination
(the differences) of the states as opposed to being a function of the

states individually. Manifolds F are linear because the conservation

property is linear. 1In the case of RC-circuits the conservation broperty

expresses Kirchhoff's current law (KCL) and in the case of power systems

the conservation of angular momentum. These physical laws are linear even
g [: when some elements of the network have nonlinear characteristics.

To rewrite (4.10) in matrix form we define the difference

matrix G = diag (Gl”"’Gv) where

-1 1 0 « e 0
-1 o 1 . . . 0
qy = (4.16)
-1 0 . o e 1
= -

js a (na-l)xna matrix with two nonzero elements per row. Ordering the
states x in the same area, consecutively, with the reference state first,
denoting M = diag (ml""’nh) and Ca = (UTMU)-1 UTM the transformation

(4.10) is

= X - (4. 17)
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where s is a p-vector with components s, . The inverse of (4.17) is '}

x=[U B] (4.18) i
z+s ’

where B = M-IGT(GM-IGT)-I. Recall from (4.6) that every row of U has

one entry 1 and the rest 0, whence,

Ll “". P

x; =y +by (2+s) VYV i€as o=l,...5v (4.19)
o

where b; is the i row of B. After simple manipulations we obtain the ﬂ

transformed model

.Z’
.
-

* Y

dy
—g = -1 - - -
. e 2, ngi 85 [ yg)+ b, -b) (z4s)] Z Li(e) (4.20) 4
icw i B:]-"":\) -
Bfo )
dz
?i = - ;‘1— [ £ £, (2,-2,+8 -8 )+, (2,45, ) -I, (e)] 7
T " kEKi r r ir
k#r -1
1
-—1[ & f£ +3 )+ I
mr K€ K kr (zk skr) r(e)] .
r (4.21) j
- 1 - -
e [ n, jEJi 81y [(gmyg)t(by=by) (z4s)] ]

-1 - -
n T By [ yp+cor bi)(z+s)]1 . o

k.

In (4.20), (4.21), ft€qo,j€EP and b,, bj’ b, are the i, j, r rows of B,

respectively, r€y. Since from (4.14) g 11(0) =0, o=1,...,v
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T Ii(z) = 0(e) s o™l .05y ©(4.22)
i€o
and the right-hand side of (4.20) is 0(35.

In the original state description (4.4) areas cannot be considered
weakly coupled because over a longer period their interaction through weak
connections becomes significant. In the transformed description the fast-
time area models in z variables are weakly coupled, and the long term area
interaction is approximately described by (4.20), that is, the aggregate

variables y alone. The fundamental difference between this model and the

original is that the decoupled z-equations obtained by setting e=0 in
-i; - (4.21), no longer have a continuum of equilibrium points.

The definition of slow coherency as given in [24-28] is based

on a modal decomposition and is not directly applicable to nonlinear
systems. Since we have shown that the two-time-scale properties remain
valid for nonlinear systems, we will use them for the following generaliza-
tion of the notion of slow coherency.

Slow coherency. States x,,x, of (4.4) are said to be slow

3

(t) = const ¥ t > 0. States xi,xj

- T P a . - ’
R T WY R
FRSIES ACES X A
VTl S
."- 0‘ .f LI R l' oo . . *
"-n 0. .

r..
ha,' «,

3

coherent if x(0)€S implies xi(t)-xj

FTT are said to be near slow coherent if there exists a bounded function of
2% time £(t) such that

9 x(0)€S = x, (t)-x,(t) = const. + e((t), ¥ t > O. (4.23)
4000

¥
o

A An area 1s slow coherent if any two states in the area are near slow-

coherent. The following theorem relates weakly coupled areas and slow

— coherent areas extending the corresponding result in [24-28].

o
2
P
4
p a :
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Theorem 4.3 If (4.21) satisfies Assumption 1.2 and ¢ is sufficiently
small, system (4.4) has y slow-coherent areas specified by U.

Proof: From Theorem 4.2, if i,j€4

xi-xj = (xi-xr)-(xj-xr) =z,-z; + (4.24)

j T SirSjce
If x(0)€S, z(0)=¢p(x(0))=0, which combined with (3.16) and (1.4) implies

that z(t) = 0(e). Then (4.23) follows from (4.24).

Model (4.20), (4.21) is in the explicit form (l1.1). Hence,
ZL; (¢e)
i

letting ¢~ 0, Ia = lim and using the fact (Theorem 3.2, Theorem 4.2)

that z = 0 the slow model is

dy /dt = =(1/ £ T  8,,[F -F.)+(b,-b,)s]

B=l,...,v
B (4.25)

- Z Ii] a=1’..-,\)-
i€a

The fast model is

] dzi/dT = -(l/mi)[ T fik(zi-.zk + Sir-skr)
kEKi
k#r

+ fir(;£+sir)-11(0)]
(4.26)

-(l/mr)[kezx L Gpts ) + 1.(0)]
r

iea, i#r fl’onl’\).

..............
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Slow model (4.25) represents an aggregate dynamic network with storage

elements
m = z mi Q-l,ooo,\) (4.27)
% ieqy
net injections
I =% fi elyeeesy (4.28)
¥ ieq
and interconnection characteristics
-y.) = Y -¥. + (b, -b . .
jep

The Aggregate model (4.25) is decoupled from the local models
(4.26). Since the sums in (4.26) involve nodes from the same area, the z
equatinns for two different areas are decoupled, that is, the fast models
(4.26) are local in the sense that they involve quantities from one area
only. Thus, each area uses its local model and at the same time provides
the data and receives results from the global model. This multimodeling
decomposition helps in formulation of decentralized controls [571.

In (4.4) and in subsequent derivations it was assumed that the
dependence of the injections Ii(:) on ¢ is known. In a realistic situation
¢ has a specific value and injections are constant. The dependence on ¢

is an asymptotic tool guaranteeing that the isolated areas formed by

e~ 0 have a well defined equilibrium. Therefore, for any function I(e)
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satisfying ¥ 11(0) =0, o=1,...,v Assumption 4.1 holds and the quantities i
i

€uv

Sir in (4.7) are well defined. However, the freedom in choosing I(e)

can be utilized to influence the accuracy of reduced models in realistic

systems where € may not be very small.

Note that for € > 0, the equilibria of (4.25), (4.26) are 1

generally different from the equilibria of (4.20), (4.21). It has been

Blasas

observed in numerical experiments that the approximation of the time

_tatiia

response improves when the equilibrium of the reduced models is closer

to the equilibrium of the origimal (4.20), (4.21); It is desirable to

Akl .

make the two equilibria as close as possible, particularly for oscillatory
responses, and if the reduced model (4.25), (4.26) is used for stability 1
analysis. The following corollaries provide guidance in this direction.

Corollary 4.4 Let xg be the equilibrium of (4.4). The equilibria of

PO W §

(4.25), (4.26) are equal to the equilibria of (4.20), (4.21) if and only

if . j
s = Gx . (4.30) <

Proof: First note that by Theorem 3.2 and Theorem 4.2 Z = 0 is the
equilibrium of (4.26), irrespective of the choice of s. From (4.17)

the equilibrium of (4.21) corresponding to xE is

E
z = GxE-s (4.31) ‘

which is made zero by (4.30). Setting z = 0 in (4.20) to obtain (4.25)
does not alter the equilibrium because zE = 0. The choice (4.30) is unique

because (4.31) is linear in s,
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Corollary 4.4 shows that there is a unique s for which the
equilibria of the exact and approximate systems are equal. Since by

definition s = Gx° and G is 2 matrix of full rank, (4.30) implies that
X =x . (4.32)

The next corollary gives a necessary condition on Ii(e) such that (4.32)
is satisfied. Boundary nodes are nodes to which interarea connections
are attached,

Corollary 4.5 Equation (4.32) is satisfied only if

E
I() ~1,(0) =¢ T g, (x-x0) (4.33)
i i ij Y173
jeJy
that is, the net injection at boundary nodes is adjusted by the interarea
flow while it is left unaltered at nonboundary nodes.
Proof: For the equilibrium of (4.4)

E E E E
y £ (X;=X,) =-¢g £ g (x;-x.) + I,(e) (4.34)
ke, ik Fi¥e jea, i3 FiT%y i

and for the equilibrium of (4.5)

e _e,
z fik (xi-xk) = Ii(O). (4.35)
keK,
Hence, (4.33) is necessary for (4.32) to be true.
In cases such as water distribution networks where some storage
elements may be nonlinear, the reduction procedure is still applicable

after some modification. Assuming that the stored quantity is a strictly
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monotonic function of the potential, the dynamics of the network are
described by an equation analogous to (4.2) in which m, is now a function
of X4 Equation (4.9) becomes

Iom (%)%
i€ o

gy m, (X,)
i€ =

o (x) = (4.36)
o

and the dynamic manifold is no longer linear. The equilibrium manifold,

however, is still given by (4.7).

4.3 Power System Application

The concepts of area aggregation and slow coherency that emerged
from the separation of time scales in dynamic networks (Theorem 4.2
originated as model order reduction techniques in power systems [21-23].
First, a group of coherent generators, that is, generators that ''swing
together" is identified and then this group is replaced with an equivalent
generator. Analytical studies of coherency [58,59] and coherency based
aggregation [24-28)] were based on linearized versions of the electro-
mechanical model of power systems. In this section we apply the reasoning
of Section 4.2 to extend the model simplification approach in [24-28] to
the nonlinear electromechanical model, and to more complex models involving
flux decay dynamics and voltage regulator,

The well known electromechanical model [60] of multimachine

power systems is

2H; §3= B -P 1=1,2,...,7 (4.37)

PR

ik dd




s 10 SN L% Am SR ae Pl B ) ST Saru R

p—,

- e 3 T R TR T T
e e AP A A e A A e o YT e At TR TR TR T e . Lo
.t T T - P - 7. L. t e ‘. - - - N . - - . N R : - - .

73

where 64 is the rotor angle of machine 1, H; 1s its inertia constant,

and P . are its mechanical input power and electrical output power,
e

Pt i
respectively, and the small damping was ignored [25]. In this model Pmi

is assumed to be constant and Pei is given by

2
Pei = j§1 vivj Bi.j sin (ai-aj) + \A Gii (4.38)
j#
where vy is the constant voltage ''behind the transient reactance," Bij

is the (ij)-th entry of the admittance matrix reduced to the machine nodes
and Gyy represents the load conductance at node i.

Substituting (4.38) into (4.37) we obtain

n
" 1 2

6, = - Eﬁ; [jzl vivj Bij sin (6£ 5j) (Pmi \ Gii)] (4.39)

j#i

which is in the form of (4.3) with mi=2Hi, xi=61,

fij (xi-xj) = vivj Bij sin (éi-éj) (4.40)
I, =P, -vig 4.41
i1 " P TV Gy (4.41)

Multimachine power systems are often comprised of groups of tightly
connected machines with weak connections joining the groups. Assuming
that weak comnnections are known system (4.39) takes the form (4.4) for
which Theorem 4.2 gives equilibrium a;d dynamic manifolds and defines slow
and fast variables. Note, however, that since damping was neglected the

response of (4.39) is purely oscillatory and the separation of time scales

“-_ 8 ot - "4 m  am P
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is understood in the sense of separating low frequency from high frequency
oscillations [61]). Using transformacion (4.10) we can arrive at expressions
similar to (4.20)-(4.21) from which the slow core and the fast residues are
defined as in (4.25)-(4.26). The reduction procedure in power systems and
some physical interpretations of the reduced models are illustrated through
the following five-machine example.

In the power system of Fig. 4.1, Hi = 0.5, Viap i=1,...,5 and

1, =0.1. The net injections Ii and the resulting

B34™B,57B157B14

steady-state angles (in radians) are given in columns 1 and 2 of Table 4.1.

B19™By37Bys”

Table 4.1. Bus angles for five-machine power example

1 2 3
L, =~ 0.28 61 =0 ! 61 =0
12 = - 0.077 6, = 0.171 i 62 = 0.215
13 = 0.186 53 = 0.391 63 = 0.458
I4 = 0.362 64 = 0.723 54 = 1.042
I5 = - 0.191 65 = 0.456 65 = 0.730

Note that since admittances B are much smaller than the

34 Bas0 Bise Byy
rest, the system is divided into two weaklyv connected areas g = [1,2,3},

B = {4,5}. Suppose now that line B14 is tripped and we want to simulate the
resulting oscillations using reduced models (4.23)-(4.26). The post fault

load flow (shown in column 3 of Table.4.1) gives

LAY S G U D T UL abadiand Dl e el .
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Fig. 4.1 Five-machine power system example.
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s, = 5‘1’-52 = - 0.215

12
e .e
; 84, = 63-62 = 0,243 (4.42)
e e
845 = 64-55 = 00312-
Defining new variables
- 61+62+63 _ 64+65
4 3 ’ Y2 2
(4.43)
2y = 8176,%15 s 2p 8370, 3 s 23 7 84785795

and letting ¢+ 0 we obtain the slow model

¥, = - 0.033 sin Gl-‘iz-o.oss)

0.033 sin (§,-7,+0.147)

0.033 sin (51-§é+0.078)-0.057
(4.44)

¥, = - 0.05 sin (3,-5,-0.078)

0.05 sin (3,-¥,-0.147)

0.05 sin (3,-F,+0.068)+0.086

and the fast model

.
~

2, =-2sin (Z,~0.215) - sin (52+0.243) - 0.185

1 (4.45)

z, = = 2 sin (Z,+0.243) - sin (Z,-0.215) + 0.269
& 1

2

Zy = - 2 sin (2,40.312) + 0.614 . (4.46)

»

Note that (4.44) is decoupled from (4.45), (4.46). The aggregate model
(4.44) represents the oscillations of the aggregate angles ¥1»Y, against

each other, whereas, the local models (4.45), (4.46) represent the

iAAS i
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n K intermachine oscillations in areas ¢,f, respectively. Figures 4.2-4.5
E;ﬁ - show simulation curves with initial conditions equal to the prefault

equilibrium. Figures 4.2, 4.3 show exact (sqlid lines) and approximate

ii’ _: (dotted lines) responses of angles 61,64, whereas, Figures 4.4, 4.5

5 | show exact (dotted lines) and approximate (solid lines) responses of the
transformed variables Y1225+ Note that generator angles are mixed variables,

whereas, v is predominantly slow and z, is predominantly fast.

2
We now turn to more complex models of power systems and again
investigate the effect of weak connections on the time scale behavior of
the system. The model we employ is basically the one in [62] with a slight
simplification; we do not include the fictitious quadrature axis coil g

which is meant to model eddy currents in the rotor. With this simplification

the model 1is

5, = 377(w,-1) (4.47a)

A S '
ZHiw:L = Ti- T iqi - Di(wi-l) (4.47b)
"_ ' ./ 1 A !
S a1 T T, [far ” ®ar™ ag) tai*Feas! (4.47¢)
n@®: . 1 KF
e Reg =7, (Rpy + T Egqy) (4.47d)
é Fi F
B -l
SE ra T T ] [-(Kg + S (Bggq)) Eggy + Vil (4.47e)
E‘ﬁ {
g 2 = / -
?ﬂé idi ? Bij eqj cos (6i 63) . (4.48a)
.'-‘2 . = ’ -
= far T X Buy eqp fin (6476p) (4.48b)
..
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- x’l

* Cqi di

=e/ +x'i . , V (4.49)

di di qi qi

where state eé is proportional to the field flux, equations (4.47d-f)
model the voltage regulator-exciter system and (4.48), (4.49) give the
interaction of the generators through the transmission network.

If the power system is made of y weakly connected areas, (4.48a),

(4.48b) are written as

i,,=- X B,,e’, cos (6,~6,) -e L B, e’ cos (6,5,) (4.50a)
ai jeq M 0 1795 K M Sk 170k
- ’ 7 -
iqi = z Bij eqj sin (Gi-éj) +¢e7¥ Bik eqk sin (61 ak) (4.50b)
j€u kéo

where i€y, o=l,...,v. We now make the important observation that (i)
machines interact solely through currents id’iq and (ii) 1d’iq are functions

of the differences 61-6 of angles, not of angles individually. Hence,

]
letting €=0 in (4.50) and setting the right-hand side of (4.47) equal to

zero we see that if an assumption analogous to 4.1 is met, points satisfying

6i-5r-sir = Q

u& = ]

!’ - 4

qi eqie

Ret ™ Rete

e
(4.51)

ad A0
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n ] where subscript e denotes equilibrium and r€y, 1€y, i#r, o=1,...,v are
E?- - equilibrium points of (4.47). That is, (4.47) at ¢=0 has a y-dimensional
E;ﬁ %i equilibrium manifold described by (4.51). An argument similar to the one
u ; in Theorem 4.2 shows that

3

AN o(b,0) = T 375 6; + L 2Hw; = 0(8(0),w(0)) (4.52)

o i€y i€y

for o=1,...,v defines the family of dynamic manifolds of (4.47). 1In all
realistic cases Di'<<377 so that we can ignore the first term in (4.52).
Note that although we started with a higher-dimensional model of the power
system the equilibrium and conservation relatioms (4.51), (4.52) involving
§,w variables are identical to the ones obtained by working with the
electromechanical model. Consequently, we obtain an electromechanical

slow model involving the aggregate variables § = ( ¥ 2H1 61)/ T 2Hi,
@ i€ i€q

35.
mcv o

4.4 Coherency and Lo.alizability

As shown in Section 4.2 weak connections in a dynamic network
give rise to slow-coherent groups of states which are described by local
models. We now restrict ourselves to linear time invariant systems and
investigate the relation between coherency and localizability wheu weak
connections are not present. This discussion clarifies the presentation
in [24,25] where the two notions werg essentially treated as equivalent,
For the sake of completeness we repeat here the definition of coherency

of [24,25].

-------

PP PPN PO




e
s
ot
AT

Definition 4.6 Let X=Ax be a LTI system, ¢ be a subspectrum of A and Vc
be the corresponding eigenspace. Then states x, and xj are said to be
coherent with respect to ¢ if and only if, x(O)evcinmliea that

xi(t) = xj(t) R Yy t>0 . (4.53)

A group of states is said to be a o-coherent group if any two states from
the group are coherent with respect to o.

Suppose now thattla states of a system are considered to belong
to a group . The criterion for such grouping can be geographic proximity,
accessibility to remote sensing or similar. In an attempt to describe the
"local" behavior in the group we use na-l differences XX, where i,k
belong to the o set of indices. Typically, we fix index k as the local
reference and take all i#k in the group ¢ to form the differences. We then

investigate under what conditions the local variables

z=[G ! 0] x = G° x (4.54)
where
< n -
o
-1 1 0 . .0 T
-1 0 1 . . « 0
G = n-1 .
. . . . o (4.55)
-1 0 . . . . 1 l
L i

»

are independent of the rest of the system.

Ao . » PP o 2 LY Y S W

2

(e

[ 78 S0 Y

PP Ye.




ASTREETEL ™ < SR
!

85
i B Definition 4.7 Group ¢ is said to be localizable if there is an Aa
: *)
_ such that
< z=A z (4.56)
. )

5 Q{ Lemma 4.8 A group of states is localizable if and only if it is a

g-coherent group and

a_=n - na +1 (4.57)

where nc is the number of modes in ¢.
Proof: 1f the group is localizable z can be decoupled from system
implying that n-na+1 modes are unobservable from z. 1If Vo is a basis

of the eigenspace corresponding to these modes

Gch =0 (4.58)

which implies that rows of Va corresponding to states in the group are
equal. Hence, it is a coherent group. Conversely, the rows of VU
corresponding to a coherent group are equal implying that n modes are
unobservable. When nc satisfies (4.57) the number of observable modes
is n -1 which equals the dimension of z and the group is localizable.

o
Note that for Vc to be full rank nc has to satisfy

a <n-n +1 (4.59)
(*) o

*

( )The notion of localizability is identical to aggregability
with respect to matrix G, of (4.54). To avoid confusion we reserve the
latter term for "area' aggregation.
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Hence, for the coherent group to be localizable nc is required to take its
maximum permissible value. Note also that the smaller the group the larger
nc and the harder it is to satisfy the localizability conditions. On the
other hand we do not benefit much by localizing a large group. Finally,
note that the only modes observable from the local variables of a localiz-
able group are the complementary modes gc, henceforth, called local modes.
When a system is divided into more groups of states the localiz-
ability conditions can be applied independently to each group. As an

example, let the modal matrix of a 5-state system be

—a b c * *7

*1
x2 a b c %* * o
X, a b c * * (4.60)

x4 * n k £ m } ]
{_* n k A m—

where the stars can be any numbers such that the matrix is nonsingular.
Group o = {xl,xz,x3} is a ca-coherent group where o, = {xl,xz,k3} and
satisfies (4.57). Hence, it is localizable and its local mcdes are

c

C {k4,X5}. Likewise group g = {XA’XS} is g = {kz,k3,x4,x5} satisfies
c=
B

above example both the groups and the local modes are disjoint, the

(4.57) and it is localizable with local modes g {xl}. When, as in the

system is called multi-localizable.

acaa )
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As it is clear from (4.60) the multi-localizability conditions
are very stringent. Note that in a multi-localizable system, each set of
local variables decouples from the rest of the system and observes only
the local modes. A less stringent requirement is that the local variables

from the different groups decouple from the system as a single set,

Definition 4.9 Let the states of ian be divided ir%o r disjoint groups,
each consisting of two or more states, and s states not assigned to any

group. Then the system is called decomposable if the local variables

0 x=G, x (4.61)

s . Gt v G e e W e

. -

decouple from the system that is if there is a matrix A, such that

)
z = A,z (4.62)
where
< n, _—>
i ]

-1 1 0 o 0

-1 Q0 1 e e . 4]
G, = a-1 . . . e (4.63)
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) nv is the number of states in group v and the s single states are the -
:i last entries of x.
. The following lemma establishes the relationship between 23
! decomposability and coherency. s
Lemma 4.10 A system is decomposable if and only if each of its groups is :
gi coherent with respect to the same set of modes oy and ;i
- T+s=0_, (4.64)
o
- where n _ the number of modes in ¢_.
= o2 a
ﬁ! Proof: 1f a system is decomposable, only n-s-r modes are observable from
f the same number of local variables z. Let o, be the set of r+s unobservable
5 modes and V a basis for the corresponding eigenspace. Then
F GT V=20 (4.65)
ﬁf which implies that each of the r groups is a coherent group with respect

to g,- Conversely if all the groups are ccherent with respect to Oy modes

are unobservable from z. If further the number of the z variables n-s-r

equals the number of observable modes n-n o> that is (4.64) is satisfied,

the system is decomposable.

g

ey
v e
aadiade g

As an illustration consider again groups ¢ and g in (4.60).

Both o and p are coherent with respect to g, = {kz,xa} = caroa and the two -]

Tl el

modes N equal in number the two areas. Hence, the system in (4.60) is

»

decomposable.
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? n CHAPTER 5
N

SUGGESTIONS AND CONCLUSIONS

— 5.1 Suggestions for Further Research

The ideas in this thesis can be extended in several directions.
- " In Chapters 2 and 3 we showed that equilibrium a;d conservation properties
of an auxiliary system imply multi-time-scale behavior. Howevet; we did
not investigate the relation Between the two properties. Does the existence
of one property imply the other? And under what‘conditions? It is clear
that in Linear Time Invariant systems with simple structure of N(Ao)
(Equations (2.11)-(2.13)5 the two properties are equivalent. We feel that
the existence of an equilibrium manifold implies conservation properties
in a wide class of nonlinear systems. This issue and the one of systematic
" procedures for finding equilibrium and dynamic manifolds deserve further
2 investigation. A look at the decompoéition in [63] and the differentia{
, geometry techniques used therein should prove useful. Time scales in

discrete~time systems is a rather neglected topic. Does the coordinate-

£free characterization carry over to this class of systems? And how are
time scales related to the sampling period?

We have dealt mostly with time scales of free systems. On the
other hand, high gain control is known to change the time-scale behavior
(Section 3.3) of systems, 1In Section:2.5 we have given conditions under

f: which nonexplicit controlled LTI models can be transformed to explicit

controlled models. Similar results for nonlinear systems would be desirable.

. " ™ 8% a® o ® e A e T T e L.t Y e e, . .. e e et . R T A R SR
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This issue is related to extension of the high gain results of Section 3.3

to wider classes of systems. A rather easy extension would be to include
dependence of matrix B on x.

The decomposition into a slow core #nd fast residues seems
promising in decentralized and hierarchical control design along the lines
of [57]. When dealing with physical systems such as power systems,
prospects for implementation of such designs should be a considerationm.

In terms of practical significance the time scale decomposition
of dynamic networks in Sections 4.2,4.3 seems to be the most promising.
Stability tests by decomposition methods have been used in power systems
[64] but they usually give conservative results. We feel that the decomposi-
tion into slow core and fast residues takes advantage of the structure of
the system (weakly connected areas) and it is likely to provide practical
results. Moreover, it can furnish information on the type of instability,
that is intermachine of interarea instability. It would also be interesting
to study time-scale separation and stability questions using more complex

generator models and an unreduced network.

5,2 Conclusions
Singular perturbations have been related to equilibrium and

conservation properties of an auxiliary system. Besides providing a
coordinate-free characterization of singularly perturbed systems, these
properties have been used in definition of new predominantly slow and
predominantly fast coordinates. In the new coordinates an extensive amount
of literature provides simplified models, asymptotic calculations, two-stage

designs and stability tests.
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Results on high gain feedback control have been extended to a
class of systems much larger than LTI systems. Disturbance rejection
behavior has been shown to be similar to the one in the LTI case.

The relation between weak connections and time scales in a class
of interconnected systems has been established. Weak connections combined
with equilibrium and dynamic manifolds of the subsystems give rise to
multi-time-scale behavior. Separation of the time scales results in a
slow core describing the system-wide dynamics and a set of fast residues
describing the loc;I dynamics., In the new repreéentation recent stability
results can be applied to give decentralized stability tests.

When the interconnected system has the added structure of a
dynamic network the slow core and the fast residues acquire physical
significance and the definition of slow and fast variables is related to

physical laws. The linearity of these laws makes the transformation

sebarating the time scales linear. This transformation is the area
aggregation-slow coherency one, developed for linearized models of power

systems.
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APPENDIX I. SINGULAR PERTURBATION ON THE INFINITE HORIZON

Under consideration is the system

d

&= £(t,y,z,¢) ye) =y, ‘
(® i

e 92 u o(e,y,2,¢) 2(t ) = z

dt 8 ’y, 3 o) o
with degenerate system i
3
_dl ]

®) = = £(t,5,0,0) . ye) =y,
and boundary layer system I
(BL) 4z . g(e.8,2,0) | "
dr BlasPs2, 3
where (o,B) are treated as parameters. In (P) x,f are k-vectors, g,y ?

are j-vectors and, without loss of generality it is assumed that

g(t,y,0,0) = 0 for all t,y.

Let |x| =2 lxil be the norm of x, let I = [0,=],

k+
Sp = {(y,2) ¢ E j: Iyl + |z| < R} and let sRIy’s represent the

Rlz
restrictions of sR to Ek and Ej.
The following assumptions are made about (P), (D), (BL).

(I) System (P) has a solution y = y(t), z = z(t) that exists for

to S t <_¢o af a
Ej (11) f’s’fy,fz,gt,gy,sze C where fx.denotes the matrix S;i > ;
e ]

St !
" * a e

133-1’00 o.k.
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' - (II1) Function f is continuous at z=0,e=0 uniformly in (t,y) €I x sk‘y
2 and £(t,5,0,0), £.(t,7,0,0) are bounded on I x Sp ..
(IV) Function g is continuous at e=0 uniformly in (t,y,z)€ I x S_, and

R’
g(t,y,z,0) and its derivatives with respect to t and the components of y,z
are bounded on I x SR.

To siﬁplify notation let X be the class of all continuous,
strictly increasing, real valued functions d(r), 0 £ r with d(O)'. = Q;
and let , be the class of all nomnegative, strictly decreasing, continuous,
real-valued functions ¢g(s), 0 < s < = for which &(s)~0 as g—o,

(V) The zero solution of D is uniform-asymptotically stable. That is,

ifx= Q(t,to,yo) is the solution of (D), ¥ d€ o/ such that

B(t,t,7,) < d(lyol) a(t-t ) for lyol SR, 0gt <t<o.
(VI) The zero solution of (BL) is uniform-asymptotically stable uniformly

in the parameter (o,B)€ I x S That is, if y = Y(s,zo.a.p) is the

Rly’
solution of BL, I e€X ,p&s/ , such that

¥(s,z ,0,8) < e([z,]) p(s)

forall 0 g s <=, |y | <Rand (0,P)E€I xS, Iy

Then the following Theorem is true [36].

Theorem [36] Let conditions (I) through (V1) be satisfied. Then for

£ sufficiently small [y | + |z°| and ¢ the solution of the perturbed system

(P) exists for t,St<o, and this Solution converges to the solution of

the degenerate system (D) as ¢— 0+ uniformly on all closed subsets of

E t°<t<0.
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APPENDIX II. A STABILITY THEOREM %
Consider i
y = £(y,2,¢) ye B, c "
y 3
® . m :
ez = g(y,2,¢e) z€ Bz cR -
where B y’Bz denote closed spheres centered around y=0, z=0. Assume that ‘j
y=0, 2z=0 is the unique equilibrium of (P) in By’Bz and that g(y,0,0) = 0, :;i

for all y€ By. The reduced system of (P) is

(®) y = £(y,0,0) & £ ()

;- and its boundary layer is

- (81) & = 80,2(0,0).

4
*

ey

Athadt

Let the following assumptions be satisfied.
(I) Reduced system (R) has a Lyapunov function V:Rn~R, such that for all

'::. yé By:

v, VT £,0) S - o, YO, o >0

.l v,
gt pe"a -t el

e where ¥(y) is a scalar-value d function of y with v(0) = 0, ¥(y) # O
ify 4 0.

(II) Boundary-layer system (BL) has & Lyapunov function W(y,z):Rnx =R

Ta Tl J B SO

such that for all y€ By, z€ Bz
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(v, w(y.z)]T 8(y,2,0) < - o ¢2(=) a >0

vhere §(z) is scalar valued and $(0)=0, {(z)#0 Lf z$0.

(11I) The following inequalities hold for all y€ By, 2€ Bz

@ 19, ¥@,2]" £6,2) 2 ¢, ¢ (@ + ¢, @) ¥)
® (v, V1" [£G7,2) - £3,0] < B; ¥ $(=)
© (v, 95,01 [8(5,2,6) - §(,%,0] < &, ¢ (2) + &, YO) § ()

Theorem [20] If conditions (I)-(III) are true, the origin x=0,y=0 is an

asymptotically stable equilibrium point of (P).
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